CHEMISTRY

PAPER - 1
(THEORY)
(Maximum marks: 70)
(Time allowed: Three hours)
(Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.)

All questions are compulsory

Question 1 is of 20 marks having four sub parts, all of which are compulsory. Question numbers 2 to 8 carry 2 marks each, with two questions having internal choice. Question numbers 9 to 15 carry 3 marks each, with two questions having an internal choice.

Question numbers 16 to 18 carry 5 marks each, with an internal choice. All working, including rough work, should be done on the same sheet as, and adjacent to the rest of the answer.

The intended marks for questions or parts of questions are given in brackets []. Balanced equations must be given wherever possible and diagrams where they are helpful. When solving numerical problems, all essential working must be shown.

In working out problems, use the following data:
Gas constant $R=1.987{\mathrm{cal} \mathrm{deg}^{-1} \mathrm{~mol}^{-1}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}=0.0821 \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} .}^{2}$

$$
1 \mathrm{l} \mathrm{~atm}=1 \mathrm{dm}{ }^{3} \mathrm{~atm}=101 \cdot 3 \mathrm{~J} .1 \text { Faraday }=96500 \text { coulombs. }
$$

$$
\text { Avortdro's number }=6.023 \times 10^{23}
$$

Question 1

(a) Fill in the blanks ${ }^{1}$ y choosing the appropriate word/words from those given in the brackets:
(more than, primary, cathode, Lucas reagent, two, four, less than, Grignard's reagent, tertiary, anode, zero, equal to, three)
(i) The elevation of boiling point of $0.5 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$ solution is \qquad that of 0.5 M urea solution. The elevation of boiling point of 0.5 M KCl solution is \qquad that of $0.5 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$ solution.
(ii) A mixture of conc. HCl and anhydrous ZnCl_{2} is called \qquad which shows maximum reactivity with \qquad alcohol.
(iii) In electrolytic refining the impure metal is made \qquad while a thin sheet of pure metal is used as \qquad .
(iv) When the concentration of a reactant of first order reaction is doubled, the rate of reaction becomes \qquad times, but for a \qquad order reaction, the rate of reaction remains the same.
(b) Select the correct alternative from the choices given:
(i) The cell reaction is spontaneous or feasible when emf of the cell is:
(1) negative
(2) positive
(3) zero
(4) either positive or negative
(ii) Which, among the following polymers, is a polyester:
(1) melamine
(2) bakelite
(3) terylene
(4) polythene
(iii) The correct order of increasing acidic strength of the oxoacids of chlorine is:
(1) $\mathrm{HClO}_{3}<\mathrm{HClO}_{4}<\mathrm{HClO}_{2}<\mathrm{HClO}$
(2) $\mathrm{HClO}<\mathrm{HClO}_{2}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4}$
(3) $\mathrm{HClO}_{2}<\mathrm{HClO}<\mathrm{FClO}_{4}<\mathrm{HClO}_{3}$
(4) $\mathrm{HClO}_{3}<\mathrm{HClO}_{4}<\mathrm{HClO}<\mathrm{HClO}_{2}$
(iv) A catalyst is aforostance which:
(1) chagjes the equilibrium constant of the reaction.
(2) increases the equilibrium constant of the reaction.
(3) supplies energy to the reaction.
(4) shortens the time to reach equilibrium.
(c) Match the following:
(i) Diazotisation
(a) Anisotropic
(ii) Crystalline solid
(b) Reimer-Tiemann reaction
(iii) Phenol
(c) Diphenyl
(iv) Fittig reaction
(d) Aniline

1219-862A

(d) Answer the following questions:
(i) (1) Which trivalent ion has maximum size in the Lanthanoid series i.e. Lanthanum ion $\left(\mathrm{La}^{3+}\right)$ to Lutetium ion $\left(\mathrm{Lu}^{3+}\right)$?
(at. no. of Lanthanum = 57 and Lutetium $=71$)
(2) Explain why Cu^{2+} is paramagnetic but Cu^{+}is diamagnetic. (at. no. of $\mathrm{Cu}=29$)
(ii) When a coordination compound $\mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}$ is mixed with AgNO_{3}, three moles of AgCl are precipitated per mole of the compound. Write the structural formula and IUPAC name of the coordination compound.
(iii) Calculate the boiling point of urea solution when 6 g of urea is dissolved in 200 g of water.
$\left(\mathrm{K}_{\mathrm{b}}\right.$ for water $=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, boiling point of pure water $=373 \mathrm{~K}$, mol. wt. of urea $=60$)
(iv) Identify the compounds $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D in the given reaction:

Question 2

(a) For the reaction $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C} \star \mathrm{D}$, the initial rate for different reactions and initial concentration of reactants ar given below:

S. No.	Initial Conc.		$\begin{gathered} \text { Initial rate } \\ \left(\text { mole } L^{-1} \sec ^{-1}\right) \end{gathered}$
	${ }^{60} 1 \mathrm{~mole}^{-1}$	[B] mole L^{-1}	
1	1.0	$1 \cdot 0$	2×10^{-3}
20	$2 \cdot 0$	$1 \cdot 0$	4×10^{-3}
3		$1 \cdot 0$	8×10^{-3}
	1.0	$2 \cdot 0$	2×10^{-3}
	$1 \cdot 0$	$4 \cdot 0$	2×10^{-3}

(i) What is the overall order of reaction?
(ii) Write the rate law equation.

OR

(b) 25% of a first order reaction is completed in 30 minutes. Calculate the time taken in minutes for the reaction to go to 90% completion.

Question 3

(i) Name the type of drug which lowers the body temperature in high fever condition.
(ii) What are tranquilizers? Give one example of a tranquilizer.

Question 4

Write the balanced chemical equation for each of the following:
(i) Chlorobenzene treated with ammonia in the presence of $\mathrm{Cu}{ }_{2} \mathrm{O}$ at 475 K and 60 atm.
(ii) Ethyl chloride treated with alcoholic potassium hydroxide.

Question 5

(i) Name the monomer and the type of polymerisation that takes place when PTFE is formed.
(ii) Name the monomers of nylon 6, 6 .

Question 6

Name two water soluble vitamins and the diseases caused by their deficiency in the diet of an individual.

Question 7

(a) How will you obtain trie following (give balanced chemical equations):
(i) Benzene frorophenol.
(ii) Iodofon! from ethanol.

OR

(b) How will you obtain the following (give balanced chemical equations):
(i) Salicylaldehyde from phenol.
(ii) Propan-2-ol from Grignard's reagent.

Question 8

Show that for a first order reaction the time required to complete 75% of reaction is about 2 times more than that required to complete 50% of the reaction.

Question 9

(a) When $0 \cdot 4 \mathrm{~g}$ of oxalic-acetic acid is dissolved in 40 g of benzene, the freezing point of the solution is lowered by 0.45 K . Calculate the degree of association of acetic acid. Acetic acid forms dimer when dissolved in benzene.
$\left(\mathrm{K}_{\mathrm{f}}\right.$ for benzene $=5 \cdot 12 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, at. $\left.\mathrm{wt} . \mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16\right)$
OR
(b) A solution is prepared by dissolving $9 \cdot 25 \mathrm{~g}$ of non-volatile solute in 450 ml of water. It has an osmotic pressure of 350 mm of Hg at $27^{\circ} \mathrm{C}$. Assuming the solute is non-electrolyte, determine its molecular mass.
($\mathrm{R}=0.0821$ lit atm $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$)

Question 10
An element occurs in body centered cubic structure. Its density is $8.0 \mathrm{~g} / \mathrm{cm}^{3}$. If the cell edge is 250 pm , calculate the atomic mass of an atom of this element. $\left(\mathrm{N}_{\mathrm{A}}=6.023 \times 10^{23}\right)$

Question 11

Describe the role of the following:
(i) Cryolite in the extraction of aluminium from pure alumina.
(ii) NaCN in the extraction of silver from a silver ore.
(iii) Coke in the extraction of from its oxides.

Question 12
(i) Write the IUPA A names of the following:
(1) $\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
(2) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4}$
(ii) $\quad\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ is a coordination complex ion.
(1) Calculate the oxidation number of iron in the complex.
(2) Is the complex ion diamagnetic or paramagnetic?
(3) What is the hybridisation state of the central metal atom?
(4) Write the IUPAC name of the complex ion.

Question 13

(a) Explain why:
(i) Transition elements form alloys.
(ii) Zn^{2+} salts are white whereas Cu^{2+} salts are coloured.
(iii) Transition metals and their compounds act as catalyst.

OR

(b) Complete and balance the following chemical equations.
(i) $\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow$ \qquad $+\ldots+$ \qquad
\qquad
(ii) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{KI} \rightarrow$ \qquad $+$ \qquad $+$ \qquad $+$ \qquad
(iii) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{FeSO}_{4} \rightarrow$ \qquad $+$ \qquad $+$ \qquad

Question 14

Give balanced equations for the following:
(i) Aniline is treated with bromine water.
(ii) Ethylamine is heated with chloroform and alcoholic solution of potassium hydroxide.
(iii) Benzene diazonium chloride is treated with ice cold solution of aniline in acidic medium.

Question 15

Define the following tovins with suitable examples:
(i) Peptisation
(ii) Electrophoresis
(iii) Dialysis

Question 16

(a) (i) Calculate the mass of silver deposited at cathode when a current of 2 amperes is passed through a solution of AgNO_{3} for 15 minutes.
(at. wt. of $\mathrm{Ag}=108,1 \mathrm{~F}=96,500 \mathrm{C}$)
(ii) Calculate the emf and $\Delta \mathrm{G}$ for the cell reaction at 298 K
$M g_{(\mathbf{s})}\left|M g^{2+}{ }_{(0.1 \mathrm{M})}\right|\left|C u^{2+}{ }_{(0.01 \mathrm{M})}\right| C u_{(\mathbf{s})}$
Given $\mathrm{E}^{\mathrm{o}}{ }_{\text {cell }}=2 \cdot 71 \mathrm{~V}$
$1 \mathrm{~F}=96,500 \mathrm{C}$

OR

(b) (i) Define the following terms:
(1) Specific conductance
(2) Kohlrausch's Law
(ii) The resistance of a conductivity cell containing 0.001 M KCl solution at 298 K is 1500 ohm. What is the cell constant and molar conductivity of 0.001 M KCl solution, if the conductivity of this solution is $0 \cdot 146 \times 10^{-3} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$ at 298 K ?

Question 17
(a) (i) Explain why:
(1) Fluorine has lower electron affinity than chlorine.
(2) Red phosphorus is less reactive than white phosphorous.
(3) Ozone acts as a powerful oxidising agent,
(ii) Draw the structures of the following:
(1) XeF_{6}
(2) IF_{7}
(b) (i) Explain why:
(1) Interhatsen compounds are more reactive than the related elemental halogens.
(2) gulphur exhibits tendency for catenation but oxygen does not.
(3) On being slowly passed through water, PH_{3} forms bubbles but NH_{3} dissolves.
(ii) Complete and balance the following reactions:
(1) $\mathrm{P}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ \qquad $+$ \qquad $+$
(2) $\mathrm{Ag}+\mathrm{HNO}_{3} \rightarrow$ \qquad $+$ \qquad $+$ (dilute)

Question 18
(a) (i) Give balanced chemical equations for the following reactions:
(1) Acetaldehyde reacts with hydrogen cyanide.
(2) Acetone reacts with phenyl hydrazine.
(3) Acetic acid is treated with ethanol and a drop of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$.
(ii) Give one chemical test each to distinguish between the following pairs of compounds:
(1) Acetone and benzaldehyde.
(2) Phenol and benzoic acid.

OR

(b) (i) Write chemical equations to illustrate the following name reactions:
(1) Aldol condensation.
(2) Cannizzaro's reaction.
(3) Benzoin condensation.
(ii) Identify the compounds A and B in the given reactions:
(1)

(2)

